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Abstract

Let M be an n-dimensional compact irreducible complex space with an
ample line bundle L. Suppose that dim H°(M, L) =n+2 and that the

common zeros of any n linearly independent irreducible global sections of
L consist of two distinct points or a single point with multiplicity two.

Then M is biholomorphic to a hyperquadric in a complex projective space

P"*! of dimension n + 1.
1. Introduction

Kobayashi and Ochiai [1], Fujita [2] and Miyaoka [3] have given
characterizations of the hyperquadrics, respectively. The purpose of this paper is to

give a slightly different characterization of the hyperquadrics.

Results which can be found in [4], [S] and [6] are used freely often without
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explicit references. Let M be a complex space with a line bundle L. O is the sheaf of

germs of holomorphic functions, 8(L) is the sheaf of germs of holomorphic sections

of L. HO(M, L)means H’(M, O(L)).

2. Characterization of the Hyperquadrics

We have given a characterization of complex projective space in [7]. In this

paper, a characterization of the complex hyperquadrics will be given.

Suppose that the space H 0(M , L) of global holomorphic sections of L is base
point free. Let@, ..., @y, be a basis for HO(M, L). Then a holomorphic map f

from M into the N-dimensional complex projective space PN can be defined by
F(x) = (@(x), ... 9n,1(x)). It is interesting to know the structures of the image
f(M) and the relations between M and f(M ). Now we give the main result of this
paper.

Theorem. Let M be an n-dimensional compact irreducible complex space with
an ample line bundle L. Suppose that dim HO(M, L)=n+2 and that for any n
linearly independent irreducible sections @, ..., @, in HO(M, L), their common

zeros consist of two distinct points or a single point with multiplicity two. Then M is

biholomorphic to a hyperquadric in a complex projection space prr! of dimension
n+1.
Proof. Given any n + 2 linearly independent irreducible sections @y, ..., ©,,»

15 HO(M, L), set V,_; = Z(@y, ..., 9; ) denotes the common zeros of @y, ..., ;.

We have complex subspaces

M=V, 2oV, 122V

Let d be the largest integer such that V, = M, Vi, ..., V,_; are all irreducible. By
the assumption, Vy = Z( @y, ..., ©,,) consists of two distinct points or a single point
with multiplicity two, and so V is reducible. Thus d < n—1. According to the

claim 2 in the proof of Theorem [7], we have an exact sequence
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B
0= (¢, 9g) = H' (M, L) HO(V,_y, L), (1)
where [ is the restriction map.

If ¢,;,1 € KerP, thatis, ¢;,; =0 on V,_,, then ¢4, € (¢;, ..., §;) by the
sequence (1). This shows that @, is a linear combination of @y, ..., @,. But by
the assumption, @y, ..., ¢4 are linearly independent, a contradiction. Thus @, is

not trivial on V,,_ ;.

Let V=V,_;, NZ(9, ;). By [8, Theorem 11, Theorem 14 in Ch. III], we
know that dimV =dimV, | —-1=n-d -1, and that V is of pure dimension
n—d —1. It follows that each irreducible component of V is of dimension

n—d-1.

Let V = ZW,-, where each W; is an irreducible component of V. Then each
W; is a positive divisor of V,,_,.

Z(9r), ..., Z(p,) are divisors of M, their intersection number
r=2(9;) Z(9,)--Z(9,) is equal to the number of points (multiplicities
counted) in V) = Z( @y, ..., 9, ) by [5].

By the assumption, V|, consists of two distinct points or a single point with

multiplicity two, which implies that » = 2. On the other hand, according to the
properties of intersection numbers of divisors [S] and [9], it follows that the self-

intersection of V as a divisor of V,_; is equal to the intersection number of

Z(91), - Z(9, ), we have

2=V Vv = (Z W)(Z Wl.) > Zwi W, W

This shows that V = W + W,. Suppose that d < n—2. If W, = W,, then from the

self-intersection of V, we have

2=V V-V = (2W)-(2W) = 2" W, Wy 2274 > 4
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an absurd. Thus Wy #W,. V. =V,_; N Z(9,4;) is the set of zeros of @4, on the
irreducible complex space V,_;. By [1, Lemma 1, Sect. 1] and [3, p. 130], we have
an exact sequence
p
0=y _, =y, , (L)=>0y (L) -0
where [ is the restriction map.

Then the following sequence is exact:
0 0 P 0
0> H (V,_g4, By, )> H (V,_4, Ly>H"(V, L).

Since V,_; is irreducible, dim H(V,_,. By, ,)=1 It shows that
H 0(Vn_d, ﬂVn_ 4 ) is generated by ¢, ;. Combining with sequence (1), we obtain
an exact sequence
0 P 0
0> (9, s 9g41) > H (M, L)y>H(V, L),
where [ is the restriction map.

On the other hand, similarly to the proof of Theorem in [7], it can be shown

that HO(WI, L) and HO(Wz, L) are base point free.

Consequently, when d < n — 2, it follows that H 0(M , L) s base point free.

When d =n—-1, V; =Z(¢y, ..., ¢,_;) is an irreducible curve. We have an

exact sequence

0= (@, s §yy) = HO(M, L)E>H0(V1, L), )
where P is the restriction map.
We have
dimH°(V;, L) 2 dim HO(M, L) — dim(g,, ... ¢, ;) = (n+2)— (n —1) = 3.

Taken complex numbers a, b, ¢ such that a@,, + b@,, .| + c®,, ., vanishes on Vi, it
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follows from the sequence (2) that a@, +b@,,.; +c9,,, is contained in
(@15 --» @,,_1), that is, there are complex numbers ay, ..., a,_; such that
ag, +b@, .| +cQ, 1 = aQ; +---+a,_1¢,_;. Observed that @, .., ¢,,, are
linearly independent on V;, which implies that a=5b=c=0. Thus

®,, ©,41> 9,4 are linearly independent on V.

By the assumption, V|, consists of two distinct points or a single point with

multiplicity two, and so H O(M ,L) has at most two base points.
Vi = Z(¢y, ..., 9,_1) is an irreducible curve, we may select two distinct points « and
v in V| such that # and v are not base points of H O(M , L). Since
Q;(u)=09;(v)=0 for i=1,..,n—1, it follows that @, («), @,,;(), ¢,,,(u) and

0,(v), 0,,41(v), ©,4,(v) are not all zero, respectively.

There exist complex numbers a, b, ¢ with not all zero satisfying
a®, (u) + b@, 41 (u) + c@, 42 (u) = 0,
a@, (v) + b9, 1 (v) + €@,45(v) = 0.
Let ¢ =a®, +b@,,; +cQ,, . Since @, ..., 9,,, are linearly independent, we
have that @y, ...., 9,1, @ are also linearly independent.

Let Voo =Vi N Z(9) = Z(9y, ..., py1» ). By the assumption, Vj, contains

at most two points, it is clear that u, v are contained in Vjo. Thus Vj o = {u, v}.

Suppose that H’(M, L) has a base point w. Then Q(w)=-=0,,2(w)=0,
which  implies that  @(w) = a@, (W) + b@,, (W) + 9, ,(Ww)=0 and so

we Voo = {u, v}, thatis, u or v is a base point, a contradiction.

Therefore, we have proved that H 0 (M, L) is always base point free.

We may define a holomorphic map f from M into a complex projective space

P"™! of dimension n +1 by f(x) = (91(x), ooy @,,40(x)) for xe M.

Pn+1

For any point p € , let V be a connected component of f _1( p). Then L is
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trivial restricted on V. But L is an ample line bundle on M, and so L is also ample

restricted on V. This implies that V must be a point. Thus f _1( p) is a finite set. It

follows that f is a finite map. Set Q = f(M) is the image of M in P"*! under f.
Since M is compact and irreducible, Q is an irreducible closed complex subspace in

prrl by [8]. Noted that fis a finite map, we obtain that dim Q = dim M = n, which

P"*! Thus there exists a

implies that Q is an n-dimensional hypersurface in
homogeneous polynomial F such that Q ={ye prl. F(y)=0}. If Q is a
hyperplane, that is, deg F =1, then there exist complex numbers qy, ..., a,,, with

some nonzero such that F = ;Y] +-+-+ a,,7Y,41, and thus Q = {(y, .-, Yp42)

c P"+1; oy, +--+an+2yn+2=0.

On the other hand, Q ={(¢;(x), ..., 0,41(x)) € Pl xe M}, we have
a;@;(x) + -+ a,499,.2(x) =0 for all xe M. This shows that @, ..., ¢,,, are

linearly dependent, a contradictory to the assumption.

Therefore the hypersurface Q has degree m = deg F' = 2. Since fis a finite map,
the rank of f at every point of M is equal to dimM =dimQ =n, and so
f M — Q is a holomorphic finite map of rank n. By [10, Satz 28], f : M — QO is

an open map.

Given any point p € Q, let 7, denote the number of points in f _1( p), then Iy
is a lower semi-continuous function of p.

Pn+1

Since deg F = m, a generic complex line [ in meets Q at m points

Pis s Pm- Then [ meets M at Ip ++t points under f. Without loss of

Pm
generality, we may take [ = {(0, ..., 0, Y,11, Yns2)€ P}, then @y, ..., 9, have
at least 7 +---+1,, common zeros. But V, = Z(¢, ..., ¢, ) contains at most two
points. It follows that #; +---+1, < 2. Since m = 2, this implies that #; +7, = 2

n+l1

and 7 =1, =1. Thus m = 2. Therefore Q is a hyperquadric in P77, and 7, =1

for any generic point p € P"™!. Since ¢ p is a lower semi-continuous function of p,
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we have ¢, =1 forany g€ Q. Thus f: M — Q is bijective. By [10, Satz 32], we

know that f -1 QO — M is also holomorphic. Consequently, M is biholomorphic to

a hyperquadric in

(1]

(2]
(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

P™! as desired.
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