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Abstract 

A century has passed regarding wave-particle duality, well an 
electromagnetic (EM) radiation in dispersionless free space vacuum is 
represented by a photon, with corpuscular and wave nature. The 
discussions from the past century aimed at the nature of photon inside a 
media having dispersion in the refraction property, other than free space. 



SHANTANU DAS et al. 

 

224 

We call mechanical momentum, wave-momentum, and try to match our 
‘thought experiments’ with intriguing property of this ‘photon’ or pulse 
carrying EM energy packet, and more so we try to find its property 
energy, momentum inside a media, a positive refractive media. Well if the 
media show a negative refractive index behavior, then these queries are 
profound, and suitable explanations to these classical concepts of 
corpuscular-wave nature of photon inside these media are quest for the 
scientists dealing with these meta-materials. Here some of this 
counterintuitive nature of corpuscular-wave nature of photon inside 
negative indexed material is brought out, with possible ‘new definition’ of 
its ‘wave-momentum’, the concept of ‘reactive energy’ inside negative 
indexed material, along with possible ‘new wave equation’. These 
definitions and expressions of ‘wave-momentum’ and ‘reactive energy’ 
pertaining to negative indexed material are new and discussed and derived 
by classical means. 

1. Introduction 

We have demonstrated negative refractive index ‘meta-material’ plasmonic 
structures in Ka-band. In our experimental investigation, we have made these 
plasmonic meta-material prisms of 45, 30 and 15 degrees to get enhanced 
transmittance of more than 15 dB from background; at negative angles indicating a 
refractive index of about –1.8, [20-26]. This paper is not aimed for this experimental 
design, where the meta-material realized by us is based on simple wire-array and 
labyrinth resonators, [20-26], but to focus on possible theory of the wave mechanics 
coupled to particle nature of the EM radiation, energy and momentum transport 
anomalies, a possible new momentum energy description. Also in our repeated 
observations on numerical experiments we get, as to if a pulse of EM radiation is 
launched inside a negative refractive index material (NRM), gets squeezed 
sharpened, [20-26] (refer Figure 1) similarly a spherical wave front in positive 
indexed media gets flattened as it propagates inside the NRM [20-26]. Though 
several approaches to explain these counterintuitive phenomena have been evolved, 
yet it is interesting if in the meta-material parlance particle-wave theory be founded! 
Here we give possible classical explanations to these counterintuitive phenomena 
and also new explanations regarding energy momentum, wave equation if applied to 
this negative indexed material: how shall they look, vis-à-vis positive indexed 
systems. This problem is a topic subject of investigation in modern optics also. We 
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propose the concept of reactive energy and expression for new wave-momentum for 
pulse of electromagnetic energy inside a medium (negative refractive indexed), with 
suitable derivation along with new wave equation. The research papers [7-10, 12, 
27] discussed momentum and energy of this reversed electrodynamics in other 
contexts. Herein, we are deriving the similar concepts with different approach, 
limiting to propagation of EM pulse inside NRM.  

2. Phase and Group Refractive Index in Negative Refractive Index Material 

Let us demarcate the two refractive indices, [1, 2], and [3, 11, 19] and this 
demarcation is essential in explaining the NRM theory. Take the refractive index 
dispersive that is a function of frequency call it ( ) ,ωpn  phase refractive index. This 

is basic refractive index by which the velocity of phases of travelling gets modulated 
inside a dispersive media. We call it phase index .pn  Similarly velocity of a group 

of frequency travelling wave gets modulated in the media that gives group refractive 
index .gn  In case of NRM, the phase refractive index if it were ( ) 10 −=ωpn  at a 

particular frequency ,0ω  it would imply that in that media the phases would be 

travelling with speed of light but in opposite direction. There is a backward wave 
inside NRM [1-3, 11, 13-18, 25, 26]. Refer Figure 1C; where it is demonstrated that 
phase gets reversed while inside NRM compared to the free space propagation. Now 
if there is no change in the refractive index for phases with respect to frequency, 
meaning that { ( ) } ,0=ωω ddn p  we call it dispersionless medium. In that case the 

phase velocity ( )ωpv  of the wave and group velocity ( )ωgv  of the wave are same. 

In the free space (refer Figure 1A) both group of frequencies and the crests and 
troughs of phases are travelling with ( ) ( ) .00 cvv gp =ω=ω  In the free space, we 

have same modulation for the phases of the signal and group of frequencies at a 
particular frequency and thus we say phase and group index are same 

( ) ( ) .100 =ω=ω gp nn  If the media were dispersive, we take phase refractive 

index as an ‘analytic’ function of the frequency, that is, ( )ω= analyticfn p  at a 

particular frequency .0ω  Expansion of Taylor [1-3, 11, 13-18, 25, 26], series (1) for 

this dispersive phase refractive index; taking the origin at ,0ω=ω  that is frequency 

of NRM behavior, (only to its first derivative term at the frequency 0ω  near electric 
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plasma and magnetic plasma resonance, where 0<εr  and 0<µr  for NRM), is 

defined as group refractive index, which needs be positive. Meaning that 

 ( ) ( )
( )

{ ( )} ( ) .0andat 00 >ωω=ωωω
ω

≅
ω
ω

ω+ω=ω gp
p

pg nn
d
d

d
dn

nn  (1) 

This demarcation of phase and group refractive index is very important in 
understating the behavior of NRM. NRM have unusual properties and in particular 
Snell’s law predicts that the refracted ray of EM signal on entering such a medium 
would be refracted on the same side of normal to the surface of the incident beam. 
The wave number that is cnk p ω=  has the opposite sign to its value in positive 

indexed media, since 0<pn  at .0ω=ω  It is shown [1-3, 11, 13-18, 25, 26], that 

however that Poynting vector and flow of energy points in opposite direction to the 
wave vector, hence in the expected direction of the propagation of the EM wave, 
(see Figure 1C). The existence of negative values of rε  and rµ  tends to suggest 

‘negative energy density’; but that is not the case when dispersion is taken into 
consideration. Indeed NRM can only exist if the NRM media is dispersive. 
Moreover causality (in form of Kramer-Kronigs relation) requires that group 
refractive index defined in (1) ( ) 00 >ωgn  and group velocity ( ) 00 >ωgv  are 

always positive [1-3, 11, 13-18, 25, 26]. 

In the introduction, we have made a statement of our prism experiment showing 
a negative value of refractive index of –1.8. We clarify that the observed negative 
refraction is for ‘phase-refractive-index’ as ( ) ,8.10 −≅ωpn  at ,GHz3320 ≅πω  

with region of NRM as GHz,85.0≅ω∆  whereas the group refractive index 

( ) ,00 >ωgn  as this gives positive group velocity. We thus can say that we can 

observe a negative phase refractive index but the group refractive index shall always 
be positive. Equation (1) should be read at a particular frequency 0ω  of interest, 

where we are observing a negative refractive index, in our experimental case it were 
around 33 GHz, [25]. 

We can emulate and model by a simplest model as in (2). An NRM (phase 
refractive index), by a function such that 0ω  is a frequency below which the phase 

refractive index is negative and above which the phase refractive index is positive. 
[1-3, 11, 13-18, 25, 26], as (2) 
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 ( ) .1 2

2
0

ω

ω
−=ωpn  (2) 

This (2) is simplest form of model where one gets ENG (Epsilon Negative) and 

MNG (Mu Negative) material representation as ( ) ( )221 ωω−=ωε epr  and 

( ) ( ),1 22 ωω−=ωµ mpr  where epω  and mpω  are, respectively, electric and 

magnetic frequencies below which the permittivity and permeability are, 
respectively, negative. In (2), 0ω  is chosen in the region where ( )0ωεr  and 

( )0ωµr  both are negative so that ( ) .00 <ωpn  This is design issue dealt in [1-3, 

11, 13-18, 25, 26], to realize artificially NRM. 

From (2) the differentiation with respect to ω  gives ( ) ( ) ,2 32
0 ωω=ωω ddnp  

putting this and (2) in (1), we get 
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We call −εr  and −µr  explicitly to distinguish NRM, for ENG and MNG with 

negative permittivity and negative permeability, respectively. For plasmonic system 
to achieve NRM, we need 0<ε −r  and ,0<µ −r  and for ideal case for ,1−=pn  

we need ,1−=ε −r  and ,1−=µ −r  [13-18, 25, 26]. Well one can have electric 

plasma and magnetic plasma frequency overlapped, as 0ω=ω=ω mpep  below 

which the −εr  and −µr  are negatives, so we get NRM as (2). At the surface 

plasmon polariton resonance frequency ,7.02 0ω=ω=ω ep  the value of 

,1−=ε −r  [4-6, 25, 26]; thereby, giving the value of phase refractive index as, 

( ) .1−=ωpn  Also from (2), we find that ( ) ,1−=ωpn  when .222
0 =ωω  Putting 

this value of frequency, we obtain that 3=gn  when 1−=pn  at the frequency of 

operation surface mode resonances, [4-6, 25, 26]. Thus we say that the phase 
refractive index is negative for NRM and the group refractive index is positive for 
NRM. 

3. Electromagnetic Pulse Sharpening inside NRM 

Well a wave with crest and trough moving and carrying a Gaussian pulse a 
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‘packet’ of energy, in free space travelling with speed of light ,c  (refer Figure 1A) 

when entering the NRM with ,1−=pn  will retard the wave-packets speed to 

,gnc  in this case ,3c  (refer Figures 1B and 1C) though the direction of travel of 

wave-packet, energy will be in same direction as was in free space; but the phases 
crests and troughs will here start travelling in opposite to free-space with velocity 

.c−  This is implication of the phase and group refractive index in NRM. The 
implication at NRM boundary of these opposite phases meeting will form a ‘cusp’ 
which will be oscillating at the junction of NRM to the free space (refer Figure 1B) 
[1-3, 4-6, 11, 25, 26]. This phenomenon of retardation of the wave-packet envelope 
and change of direction of travel of crest and trough the phase, inside NRM gives the 
‘pulse-sharpening’ effect, and flattening of wave-front effect, what we have been 
observing in our experiments [25], also [4, 5, 6] (refer Figure 1C). 

The cusps at the NRM boundary are due to counter propagation of the ‘phases’ 
of the waves inside and outside the NRM, they are surface charges, and at the 
boundary electric field at this cusp oscillates, [4-6, 13-18, 25, 26]; as two sets of 
impinging wave fronts meet at the interface with ENG (Epsilon Negative Material 

).0<ε −r  The same cusp will be obtained for the MNG, (Mu Negative Material 

)0<µ −r  and it may be argued that ‘surface’ currents in that case for TE polarized 

incidence, will be at the boundary and magnetic field at the cusp then will oscillate, 
[4-6, 13-18, 25, 26]. However, these points are valid when the wave hits a slab with 
ENG and MNG, i.e., NRM here however there will be propagating modes inside 
NRM-from evanescent [4-6, 13-18, 25, 26]. In the case of double negative slab 
(NRM) there will be cusp formation at the boundary too. The formation of surface 
states or excitation of surface plasmon polariton is altogether different field in 
modern optics, where matching of wave vectors and phase velocities are mandatory, 
we will not deal with this subject here; however this is important. 

4. Pulse of Electromagnetic Energy Travelling in free Space and inside Medium 
its Transmission and Reflection at the Interface Boundary 

The discussion on this section is from classical electrodynamics principles [19]. 
Let us take following example, a pulse of EM energy travelling in free-space at a 
particular frequency ,0ω  thus carrying an energy packet of eV.0ω  This packet of 

EM radiation may be represented as a Gaussian pulse; that will strike a medium 
(other than free-space) located at ,0=z  by (4), this is derived in (5), [12, 19]. 
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The field incident at 0=z  is adequately represented by complex electric field 
as 

( )[ ] ( )[ ]∫ ω−σω−ω−ω= tkzidEE expexp 22
00

in  

[ ( )] ( ) .
4

expexp 2
2

00 ⎥
⎦

⎤
⎢
⎣

⎡
−σ−−ω−σπ= cztcztiE  (5) 

The expression (4) is for travelling electric field that has two parts. The phase 
part given inside the {} brackets, and multiplied by Gaussian travelling envelope in 

free space as [ ( ) ],4exp 22 czt −σ−  having variance ,2σ  i.e., the width of the 

packet (Full Width Half Maxima FWHM). The packet is travelling from left to right 
thus phases (crest and trough are translating in z+ -direction) with a phase velocity 

,cv p =  and the group, i.e., the envelope carrying the information/energy is 

travelling with group velocity cvg =  in the same direction of z+  in free space 

having ,1+== gp nn  [19]. Refer Figure 1A, (4) is depicted there travelling 

towards right with envelope as dashed and phases as solid lines. 

We investigate what happens when this (4), (5) incident Gaussian 
electromagnetic pulse enters a medium. This Gaussian pulse is centered at angular 
frequency 0ω  and we assume that this energy beam is weakly focused so we take 

spatial spread in only one dimension. The reflection and refraction of electromagnetic 
waves at an interface are described by Fresnel law. For normal incident [19], we 
have reflection coefficient ( )ωρ  and transmission coefficient ( )ωτ  described as (6), 

[19]; both being function of frequency since impedance of media is dispersive. 

 ( ) ( ) ,2,
00

0
ZZ

Z
ZZ
ZZ

+
=ωτ

+
−

=ωρ  (6) 

where εµ=Z  is impedance of medium and 0Z  is free space impedance. Note 

for a NRM with ,1−=ε=µ rr  the ,0ZZ =  the incident beam suffers no reflection 

and is 100% transmitted. The forms of reflected and transmitted waves follow from 
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the spectrum of the incidence pulse (5) as (7) and (8), [19]. 

[ ( ) ] ( ) ( )[ ],expexp 22
00

ref cztidEE +ωωρσω−ω−ω= ∫  (7) 

[ ( ) ] ( ) ( { } )[ ].expexp 22
00

trans czntidEE p ω−ω−ωτσω−ω−ω= ∫  (8) 

It suffices for our purpose to assume that spectrum is narrow so that we can 
approximate ( )ωρ  and ( )ωτ  by their values at 0ω  and ( )ωpn  by first two terms of 

Taylor series expansion (1). This leads to simple Gaussian forms for (7) and (8) as 
(9) and (10). 

( ) [ ( )] ( ) ,
4

expexp 2
2

000
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⎥
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⎤
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⎣

⎡
+σ−+ω−σπωρ= cztcztiEE  (9) 
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000
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⎤
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⎡
−σ−−ω−σπωτ= czntczntiEE gp  (10) 

For 100% transmission when 0ZZ =  say for NRM when ,1−=µ=ε rr  with 

( ) 10 −=ωpn  and ( ) ,30 =ωgn  we get 0ref =E  since ( ) ( ) 1,0 00 =ωτ=ωρ  and 

transmitted field inside NRM is thus given below (11). 

 [ ( )] ( ) .3
4

expexp 2
2

00
trans

⎥
⎦

⎤
⎢
⎣

⎡
−σ−+ω−σπ= cztczntiEE p  (11) 

5. Energy Momentum of Gaussian Electromagnetic Pulse 

To this Gaussian pulse, there is a packet of energy ;0ω  we can associate 

momentum c0ω  with this pulse. The research papers [7-10, 12, 27] discuss 

momentum of energy of this reversed electrodynamics, in different context but our 
approach and discussions are differently oriented. Inside a medium, we can have 
scenario where the momentum can have different interpretation if we say 

cnp p 0ω=  as phase ‘wave’ momentum inside medium, then if the media has 

,1−=pn  we get confused by this negative momentum indicating a decrease in 

pressure for radiation of electromagnetic wave, when it strikes a boundary. Well call 
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this momentum cnp 0ω  as ‘wave’ momentum, to distinguish from ‘mechanical’ 

momentum (12), (13) (containing group velocity and group index) as, Minkowski 
[7], or Abraham [8]; 

,2
0

2
0

2
1 cnvcnnp pggpm ω=ω=  (12)  

.2
002 cvcnp ggm ω=ω=  (13) 

These definitions of mechanical momentum ensure that they are positive, inside 
NRM as well. Well these mechanical momentum definitions (12) and (13) give us 
non-confusing thought that even with 0<pn  still there is positive electromagnetic 

pressure, as against definition of ‘wave’ momentum ,0 cnp p ω=  where we let 

believe if the electromagnetic pressure be negative in case of NRM! Well, only for 
phase reversal, we make use of wave-momentum, and for energy transport and 
electromagnetic energy pressure we shall make use of mechanical momentum. The 
confusion is arising because of dual nature of radiation, particle as well as wave 
nature. 

Now when the Gaussian pulse or this electromagnetic energy enters a slab with 
1≠pn  and ,1≠gn  assuming 100% transmission into that slab, we have different 

electric field as from (11) 

 { } ( ) .
4

exp 2
2

0 00
⎥
⎦

⎤
⎢
⎣

⎡
−σ−πσ= ω−ω cznteeEE g

ticzinp  (14) 

Now if we state that ,1−=pn  and ,3=gn  then we will observe that the 

Gaussian pulse envelope will compress itself and keep propagating inside NRM 
block in the same direction of ,z+  with group velocity ,3c  but the phases will 

keep now translating in space in opposite direction but with phase velocity ,c−  refer 

Figure 1C. The meeting of the two opposite phases, (refer Figure 1B) at the NRM 
boundary gives rise to cusps-owing to surface modes, which travel and oscillate in 
direction perpendicular to propagation direction and along the surface of the 
interface, [4-6, 13-18, 25, 26]. 

Well we pose a query that is if (15) can be called a photon as it has now become 
inside NRM of our choice as 
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 { } ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−σ−πσ= ω−ω− 2

2
0

photon 3
4

exp00 czteeEE ticiz
N  (15) 

is different from original (4), that is { }
( )2

2

00 40
phton cztticiz
P eeeEE

−σ−ω−ω+πσ=  

in the free space. Equation (15) seems to suggest that the pulse envelope and the 
phases travel are in opposite direction, this packet need not be thus called a photon 
packet rather ‘negative’ photon packet! (refer Figure 1C). 

Here we are visualizing that electromagnetic pulse (4) is a ‘photon’. Well this is 
how scientist describes a ‘packet of wave’ as unit energy ‘photon’. Equation (4) 
when we talk in limiting case with 0→σ  becomes singular and ideally 
representing ‘single-photon’ with frequency .0ω  Well who has really seen a photon 

a mathematical abstraction and can thus well be approximated as in (4). Our 
argument of ‘negative’ photon stems from the fact that had there be 100% reflection 
to (4), ( ) ,10 =ωρ  then we get, a packet of original photon as in (16), from (9) 

where the envelope and phases are travelling in z−  direction after hitting the 
boundary at ,0=z  thus retaining the character of original photon. 

( ) [ ( )] ( ) ⎥
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⎤
⎢
⎣

⎡
+σ−+ω−σπωρ= 2

2
000

ref
4

expexp cztcztiEE  

{ }
( )

.
2

2

00 40
photon cztticiz
P eeeEE

+σ−ω−ω−πσ==  (16) 

Reflected photon is original photon as incident photon, while transmitted photon 
inside NRM is ‘negative’ photon. 

6. Photon Momentum Transfer to the Medium 

Taking clue from the above discussion let us define phase momentum, or wave-
momentum of a photon packet as (17); this choice will be clear as we proceed for 
proof below. 

 
( )

,
sgn 00def

c
N

cnn

n
p

gp

p
c

ω
=

ω  (17) 

where .1sgn,0,1sgn,0 −=<+=> pppp nnnn  
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Well if the photon is in free space, then (17) would be cpc 0ω=  or if it were 

in our chosen NRM with 1−=pn  and ,3=gn  then inside NRM this ‘negative’ 

photon has wave-momentum as ( ) .31 0 cpc ω−=  Well we could have chosen 

(17) to be as ( ) cnnp gpc 0ω=  too, but the chosen square root for gn  will be 

explained in the next section, by total energy balance formulation. 

We start our discussion of effect of our single photon entering the medium from 
region of free space. If the photon is totally reflected, then because of the momentum 
conservation it transfers c02 ω  momentum to the medium. If the photon passes 

into the medium in that case momentum will be transferred to the medium at the 
interface surface where there will be reflection and transmission, the momentum 
transferred to surface is given as 

 ( ) ,1 0media Tp
c

Rp −
ω

+=  (18) 

where the reflection probability R and transmission probability T [19] with respect to 
free-space impedance 0Z  and impedance of medium Z are defined as 
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Putting (19) in (18) and using p of (17), we get the following algebraic manipulations 

( ) c
N

ZZ

ZZ
cZZ

ZZ
c

p 0
2

0

00
2

0

00media 4 ω

+
−

ω
⎟
⎠
⎞

⎜
⎝
⎛

+
−

+
ω

=  

( ) cc
N

ZZ
ZZ

cZZ
ZZ

c
00

2
0

00
2

0

00 42 ω
−

ω

+
−

ω
⎟
⎠
⎞

⎜
⎝
⎛

+
−

+
ω

=  

( )
( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

−
−

+
+

ω
−

ω
= 2

0

2
0

2
0

000 4
1

2
ZZ
ZZ

N
ZZ
ZZ

cc
 

( )
( )

( ) .1
24

1
2 00

2
0

000 TN
ccZZ

ZZ
N

cc
+

ω
−

ω
=

+
+

ω
−

ω
=  (20) 

Therefore with the definition of wave-momentum as in (17), we get momentum 
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transferred to the media, at the surface as 
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Using the mechanical momentum definitions of (12) and (13), and doing the 
same algebraic manipulations, we get the mechanical momentums transferred to the 
medium at the surface as 
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00media
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p gp
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Well, all these momentums transferred to medium at the surface of all types (21) 
and (22) reduce to c02 ω  for a perfectly reflecting surface when ,0=T  

corresponding to change in momentum due to reflection. It is also clear that 
mechanical momentum transferred to medium by definition of 2mp  will always be 

positive as ,cvg <  however the definition of ,1mp  and cp  (17), when used the 

momentum transfer to the medium at surface can be positive or negative depending 
on the property of media. 

Let us take an example of ideal case whence 0=R  and ,1=T  zero reflection 

and 100% transmission, for NRM with ,1−=pn  ,3=gn  and .3cvg =  The 

condition for this is ,1−=µ=ε −− rr  gives ,0ZZ =  thus .0=R  Here the photon 

passes into NRM with 100% probability ( ).1=T  For this NRM condition the 

momentum transfer associated with mechanical momentums are identical, 
corresponding to ( ) ,1 cvg−  that is, 32  of the original photon mechanical 

momentum transferred to the media. The mechanical momentum retained by photon 
is ( )31  the original photon momentum. This process is depicted in Figure 1. 

Whereas the wave-momentum transferred (21) for these values is ( ) 313 +  

577.1=  of the original momentum. The wave-momentum retained by ‘negative’ 

photon is ( )31−  times the original momentum, pointing in opposite direction to 
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wave-momentum of original photon. This also factually matches that inside NRM 
phase velocity is opposite to the energy flow or group velocity [4-6, 13-18, 25, 26]. 

The case where ,1−=pn  ,1=gn  (hypothetically if it exists) the wave 

momentum transferred (21) to the medium is twice the original wave-momentum, 
and no mechanical momentum gets transferred to the media, well this is case of total 
internal reflection. For a medium 1=pn  and ,1=gn  the wave and mechanical 

momentum transferred to the medium is zero, that is, all the momentum is retained 
by photon. 

This contradiction is embedded in principle of theory of ‘wave-particle’ duality. 
Really if we consider photon as particle that its linear momentum will be mvp =  

and this mechanical momentum is proportional to velocity. But while considering 
photon or radiation as wave then its linear momentum is vkhp ω==λ=  

here, is inversely proportional to velocity. This contradiction is unessential if the 
medium is free space dispersionless vacuum (where ) ,cv =  but brings about certain 

problem if the photon is inside a media (positive refractive indexed or negative 
refractive indexed). We can confess therefore that value of linear momentum of 
photon carrying radiation energy packet at present is far from being established 
concept. 

7. Derivation of Expression for Wave-momentum of 
Electromagnetic Pulse ‘a Photon’ 

This section will elucidate the choice of our definition of wave momentum for 
photon as in (17). Let a photon pulse be travelling in free space. Observer sitting on 
the crest and another observer sitting on the envelope, travelling in free space they 
will find themselves at rest with respect to each other, while the packet enters the 
NRM, the two observers will find that they are moving away from each other. This 
is this nature of wave-momentum that is generator of infinitesimal translations, and 
the infinitesimal translations of the ‘waves’ correspond to motion of its crests and 
troughs, and in NRM ‘opposes’ the direction of motion of radiation. It is for this 
reason the wave-momentum points in the opposite direction to the mechanical 
momentum inside NRM. Perhaps due to this reason one may state that photon is 
transformed to ‘negative’ photon inside NRM, its characteristics is different than that 
of original photon. 
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Consider photon travelling in free space with mechanical energy ,mE  that is, 

energy associated with its corpuscular part, and with phase or wave-momentum as 
cp 0ω=  having wave energy as ,pc  thus total energy is E, having relation as 

(23) below, [19]. 

 .42222 cmcpE +=  (23) 

Call pv  as phase velocity and gv  as group velocity of monochromatic EM signal 

travelling in the region ( ),20 dz <<  where the ( ) ,1+=ωpn  with relative 

permeability ,1=µ +r  and relative permittivity as .1=ε +r  Conventionally, we can 

write for the dispersionless ideal region ( )( )2dz <  that 

 .2cvv gp =  (24) 

This we are assuming that ( ) ( ) cdkdckv p =ω=ω= ;  in a vacuum where EM 

waves are travelling is ideal condition. Now we pose ourselves a question as to how 
we are writing (24), that is square of velocity of light equal to product of the phase 
velocity and group velocity. The answer to that we addressed in following 
description. 

If a space between radiator and receiver is filled by vacuum that carrying 
between them electromagnetic radiation with energy E and to that we assign a linear 

momentum as ,cEp =  is also accompanying by a mass .2cEm =  Really 

radiator after emitting wave-packet recoils with velocity ,recoil McEMpv ==  

where M is the mass of radiator. The wave packet reaches receiver sitting at distance 
Z after time ,cZt =  and the radiator moves a distance ( ) ( )McEcZtvz ==∆  

.2mcZE=  The requirement of stillness of inertia of entire system gives moment 

balance as ( ) .2cZEMz =∆  This description could be interpreted as, when energy 

E is transported from radiator to receiver, the mass of radiator gets decreased, but the 

mass of receiver gets increased by m equal to !2cE  The question is for the 

multiplier as ,2c  which is numerically equal to square of velocity of light in 

vacuum, which is used to justify the dimensions of the energy mass equation that is 

!2cEm =  Well can this multiplier have different physical meaning? 
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Let us associate gc  as group velocity of the wave-packet, then in above 

paragraph the expression for time will be .gcZt =  Let the phase velocity 

associated to crest and trough be identified as wave-velocity as ,pc  then wave 

momentum correlation will be ,pcEp =  this makes the accompanying mass as 

.gpccEm =  This validates our choice of multiplier ,2
gpvvc =  and this could be 

physical interpretation also. 

Now for negative indexed material NRM (lossless and ideal case, with 
),1−=pn  we can write an approximate relation (25), for region (( ) << zd 2  

( )),23d  where we have assumed perfect condition as ;1=ε=µ −− rr  with 

refractive index as ( ) ,10 −=ωpn  and ( ) .10 +≅ωgn  This enables the propagating 

modes inside the LHM slab, with (25). In (25), we assume ,cvg ≅  inside LHM, 

(though not possible in actual practice). 

 .2cvv gp −≅  (25) 

This negative sign in right hand side represents that group velocity and phase 

velocity are 0180  apart from each other, magnitude being c. Energy mass 
momentum expression for particle at speed of light in relativistic approach is (23), 
and substituting (24), we get 

 ( ) ( ) ,22242222
gpgp vvmvvpcmcpE +=+=  (26) 

where E is total energy, p is momentum of the particle (wave) which is present 
inside the meta-material, m is (rest) mass of the particle carrying the energy packet. 
Well the rest mass of photon is zero, but we can always associate a mass 

2cEm m=  for the electromagnetic energy carrying mechanical (corpuscular) 

energy .mE  This mechanical energy is responsible for radiation positive radiation 

pressure. While the other part of energy we may associate to phase wave-momentum 
energy due to the wave nature associated with photon-movement or translation of 
phases ‘crests’ and ‘trough’s’ motion, in the media. 

Manipulating (26), we get as follows: 
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( ) ( )2222
gpgp vvmvvpE +=  

.2

2
2

⎥
⎦

⎤
⎢
⎣

⎡
+=

m
pvvvvm gpgp  (27) 

Equation (27) is for free-space, medium with positive phase and group velocity 
and both equal to c. That is .cvv gp ==  

Now we use (27), for NRM medium and manipulate as below: 

42222 cmcpE +=  

( ) ( ) ( ) ( )gpgpgpgp vvpvvmvvmvvp 222222 −=−+−=  

.2

2
2

⎥
⎦

⎤
⎢
⎣

⎡
−=

m
pvvvvm gpgp  (28) 

Putting 2cgp ≅νν  in equation (28), we get 

 ( ) ( ) ( ).2242
2

2
222

2
2222 cpcm

m
pccm

m
pccmE −+=⎥

⎦

⎤
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=  (29) 

We split (29) into two parts, the mechanical (corpuscular) energy part ( )42cm  

and the energy transport by wave-momentum part ( ).22cp−  

Equation (29) shows that particle energy is retained itself by the particle, inside 
NRM where the phase velocity is opposite to group velocity. In this case no 
(mechanical-corpuscular) energy is transferred to the NRM medium. This we derive 

from the part of rest mass-energy that is the first part of expression ;2mc  meaning 

that corpuscular energy by photon is retained. 

But the intriguing question is the energy due to wave-momentum part is 
imaginary, inside NRM! That is equal to ipc  (considering the positive root). We can 

ascribe to this imaginary ‘negative’- photon’ a wave-momentum a value .0 cω−  

Now we retard the group velocity to ,3c  and have phase reversal with phase 

velocity inside NRM as ,c−  then ,32cvv gp =  and put the same in (26) to get 
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⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= 2

222
22

33 m
pccmE  

( ) ( ).
3
1

9
13

9
1 22422242 cpcmcpcm −+=−=  (27a) 

Here the particle inside the NRM has less total corpuscular energy; the 
difference of energy has been absorbed by the media itself. Expression (27a) 

suggests one third of the corpuscular energy ( ) 231 mc  is retained by the ‘photon’ 

inside the NRM slab, and the two thirds of its corpuscular energy are given to the 
slab!! 

Well the energy due wave momentum of the photon manifests as imaginary 

energy in this case as ( ) ,31 pci  (again retaining the positive root). We can ascribe 

to this imaginary ‘negative’-photon’ a wave-momentum, a value ( ) .31 0 cω−  

The momentum transfer cases we have discussed in earlier section also and 
maps correctly with the total energy argument cases as described here. 

Well let us consider the length of NRM slab, as ( ) ( ) ,223 Zdd =−  with pn  

,1−=  and .3=gn  The photon is retarded in comparison to its position in absence 

of medium by distance z, which is 

 ( ) ( ) ,1 Zn
v
Zvcz g
g

g −=−=  (28a) 

where Z is the thickness of medium. The relativistic form of Newton’s first law of 
motion requires that the centre-of-mass energy of a system not subjected to any 
external force should be stationary or in uniform motion. Our medium is isolated 
from such external influence, then the relevant total energy is sum of photon energy 

0ω  and the rest mass energy of the medium ,2Mc  where M is mass of medium. 

The fact that photon has been retarded by the medium means the centre-of-mass-
energy can only have been in uniform motion if the medium has itself moved to the 
right by a distance ,z∆  then the moments are 

 ( ) ( ) ( ) ( ).0
2 ω=∆ zMcz  (29a) 

Substituting value of z from (28a), we get 



SHANTANU DAS et al. 

 

240 

 ( ).12
0 −

ω
=∆ gn

Mc
Z

z  (30) 

This motion can only take place if energy transfer takes place from photon 
whilst inside the medium. The required velocity of the medium is ( ) ,Zzvg ∆  from 

which we can readily obtain momentum 

 ,
3
21 0

0medium p
c

v
cZ

zMvp g
g =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

ω
=∆=  (31) 

where the 0p  is the initial momentum of the photon in free space. Momentum 

conservation suggests that we ascribe the difference between the initial momentum 
and this medium momentum to the photon momentum inside the medium. From 
previous section the mechanical momentum of photon in this NRM would be 

,
3
1

3
1

0
02

0
2

0
2

1
NRM p

c
cnvcnnp

pggpm =
ω

=ω=ω=  (32) 

.
3
1

3
1

0
02

002
NRM p

c
cvcnp ggm =

ω
=ω=ω=  (33) 

The wave momentum of photon inside this NRM slab is 

 
( )

.
3

1sgn
0

0NRM p
cnn

n
p

gp

p
c −=

ω
=  (34) 

Equations (32) and (33) state that ( )31  of the mechanical momentum is 

retained by the ‘photon’ inside this NRM. This is well equating as if 1/3 of 
‘particular’ photon corpuscular energy is retained by photon inside NRM, whereas 

the wave-momentum retained by photon inside NRM (34) is ( )31−  times the 

original wave momentum. 

8. Imaginary ‘Reactive Energy’ and ‘Wave-momentum’ inside Medium 

In the previous section, we could balance the retardation effect stating that the 
corpuscular energy that comprising of mechanical photon momentum is transferred 
to the medium thereby inside NRM the retardation of photon takes place. What was 
intriguing was imaginary energy of the photon inside the NRM, what we termed as 
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‘reactive’ energy. This reactive energy of photon inside NRM is making the waves 
of phases travel backward inside NRM as contrary to positive indexed material. 

Could we reframe the wave-momentum inside a media be it positive indexed or 
be it negative indexed as we have defined in (17); rewritten as in (35)? Well the 
discussion suggests yes why not! 

 
( ) ( )

.
sgnsgn

0
0def p

nn

n
cnn

n
p

gp

p

gp

p
c =

ω
 (35) 

A new way to define canonical momentum inside slab, be it positive refractive 
indexed or negative refractive indexed system, also this agrees with what we derived 
from total energy balance description in the previous section. 

 

Figure 1. Propagation of electromagnetic pulse. A. Pulse propagating towards right 
in free space, having envelope (dashed) and phases (solid) travelling with velocity c 
in same direction. B. The same pulse touches the media with NRM with phase index 
as –1, and group index as +3; shows that at the boundary there is ‘cusp’ formation 
and envelope retards. Here the phases travel in opposite direction and the group 
(envelope) travels in same direction. This cusp oscillates at the surface of the NRM 
boundary. C. The pulse is travelling as envelope with squeezed envelope inside 
NRM towards the right direction with velocity 3c+  whereas the phases are 

travelling opposite to envelope, with velocity .c−  The pulse is sharpened and 
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squeezed. This is ideal case of loss-less NRM while lossy structures will have 
attenuated pulse as it travels. 

9. Wave Equation Explanation 

We can identify the motion of the photon pulse with mechanical momentum but 
the wave momentum corresponds rather to motion of the phase fronts. The 
difference is analogous to that between phase and group velocities for a wave; the 
phase velocity is that at which the phase front propagate, while the pulse and its 
associated energy propagate at group velocity, thus the phase velocity does not 
appear in mechanical momentum expressions used above. 

We now resort to classical wave as photon and see if we can distinguish 
between positive refractive indexed media and negative refractive indexed media, 
through wave equation. 

(a) Classical quantum prescriptor and Schrodinger wave equation 

Total energy of system is expressed as kinetic plus potential as 

 .
2

2
EV

m
pVT =+=+  (36) 

By putting standard Q prescriptors that is ∇→ ip  and ( ),tiE ∂∂→  and in 

addition asking these prescriptors to operate on wave function ,ψ  the standard 

Schrodinger wave equation is obtained as 

 .
2

2
2

t
iV

m ∂
ψ∂=ψ+ψ∇−  (37) 

The plane wave solution in vector form is ..1exp ⎟
⎠
⎞⎜

⎝
⎛−=ψ rpiA  

With kp =  as photon’s momentum vector linked with its wave vector, and 

,ω=E  without any potential the wave travels in straight line and we have 

( )0as22 == VmpE  and we obtain potential free wave equation as 

 .0
2 2

22
=ψ+ψ

∂

∂ E
xm

 (38) 

This has two solutions 
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 ( )
22 22 mEixmEix BeAex −+=ψ  (39) 

case for positive E propagating case. 

 ( )
22 22 mExmEx BeAex −+=ψ  (40) 

case for negative E bounded case. This bounded case is for surface wave happens for 
ENG or MNG only. 

(b) A new quantum prescriptor and Schrodinger wave equation 

Let us take the Q prescriptors modified as 

( ) ( )[ ].exp,,exp θ→ω→
∂
∂θ−−→ ikpE
x

iip  

Put them in potential free energy expression ,22 mpE =  when we operate this on 

wave function ,ψ  we get a new Schrodinger equation as 

 .0
2 2

22
2 =ψ+ψ

∂

∂θ− E
xm

e i  (41) 

Well the solutions are for this wave equation then 

( ) ( ) ( )θ−θ +=ψ imEiximEix BeAex exp2exp2 22
 

( ) ( ).expexp θ−θ += iixkiixk BeAe  (42) 

(42) is case for propagating case. 

( ) ( ) ( )θ−θ +=ψ imEximEx BeAex exp2exp2 22
 

( ) ( ).expexp θ−θ += ixkixk BeAe  (43) 

(43) is case for bounded case. 

A quick verification shall state that for ,0=θ  one gets wave equation for 

normal media where the Right Handed Media (RHM), while π=θ  gives a wave 
propagation in Left Handed Media (LHM) with NRM. This also opens up a 
possibility of having a system in between RHM and LHM. 

This gives a wave description of RHM and LHM where in the later case the 
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phase is opposite the energy flow can be represented as different quantum 
prescriptors and different Schrodinger wave equations. At least mathematics hints 
so; well physical consequences are far from reality, at present for these new Q-
prescriptors. The rotational component ( )θiexp  may be personified as demarcation 

between phase velocity and group velocity and their relation to the phase and group 
indices, a future work! The future work shall also relate the relation between this 

rotational component with that of gpp nnnN sgn=  in new formulation of the 

canonical (wave) momentum. 

10. Conclusion 

Experimental realization of negative index of refraction has as a result raised 
important questions about the validity of this negative value in well-known formulas 
of physics. The question of corpuscular energy transport inside negative indexed 
material, formation of reactive (imaginary) energy inside the negative indexed 
substances, well the character of photon pulse especially its momentum (corpuscular 
and wave) is addressed along with duality of particle-wave nature of photon. Few 
new concepts regarding new wave-momentum inside slab and reactive energy inside 
negative indexed material, and new generalized wave equation is proposed to meet 
the future theoretical advances on these realized negative indexed materials. 
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